Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888449

RESUMO

Astaxanthin (AX), a lipid-soluble pigment belonging to the xanthophyll carotenoids family, has recently garnered significant attention due to its unique physical properties, biochemical attributes, and physiological effects. Originally recognized primarily for its role in imparting the characteristic red-pink color to various organisms, AX is currently experiencing a surge in interest and research. The growing body of literature in this field predominantly focuses on AXs distinctive bioactivities and properties. However, the potential of algae-derived AX as a solution to various global environmental and societal challenges that threaten life on our planet has not received extensive attention. Furthermore, the historical context and the role of AX in nature, as well as its significance in diverse cultures and traditional health practices, have not been comprehensively explored in previous works. This review article embarks on a comprehensive journey through the history leading up to the present, offering insights into the discovery of AX, its chemical and physical attributes, distribution in organisms, and biosynthesis. Additionally, it delves into the intricate realm of health benefits, biofunctional characteristics, and the current market status of AX. By encompassing these multifaceted aspects, this review aims to provide readers with a more profound understanding and a robust foundation for future scientific endeavors directed at addressing societal needs for sustainable nutritional and medicinal solutions. An updated summary of AXs health benefits, its present market status, and potential future applications are also included for a well-rounded perspective.


Assuntos
Antioxidantes , Xantofilas , Xantofilas/química
2.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298900

RESUMO

Cis isomers of carotenoids play important roles in light harvesting and photoprotection in photosynthetic bacteria, such as the reaction center in purple bacteria and the photosynthetic apparatus in cyanobacteria. Carotenoids containing carbonyl groups are involved in efficient energy transfer to chlorophyll in light-harvesting complexes, and their intramolecular charge-transfer (ICT) excited states are known to be important for this process. Previous studies, using ultrafast laser spectroscopy, have focused on the central-cis isomer of carbonyl-containing carotenoids, revealing that the ICT excited state is stabilized in polar environments. However, the relationship between the cis isomer structure and the ICT excited state has remained unresolved. In this study, we performed steady-state absorption and femtosecond time-resolved absorption spectroscopy on nine geometric isomers (7-cis, 9-cis, 13-cis, 15-cis, 13'-cis, 9,13'-cis, 9,13-cis, 13,13'-cis, and all-trans) of ß-apo-8'-carotenal, whose structures are well-defined, and discovered correlations between the decay rate constant of the S1 excited state and the S0-S1 energy gap, as well as between the position of the cis-bend and the degree of stabilization of the ICT excited state. Our results demonstrate that the ICT excited state is stabilized in polar environments in cis isomers of carbonyl-containing carotenoids and suggest that the position of the cis-bend plays an important role in the stabilization of the excited state.


Assuntos
Carotenoides , Clorofila , Carotenoides/química , Análise Espectral , Isomerismo
3.
Methods Enzymol ; 674: 1-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008004

RESUMO

Carotenoid excited singlet states, in particular, are typically very short lived. Therefore, time-resolved absorption spectroscopy in the time regime from femtoseconds to sub-milliseconds are required to unravel and understand the complicated relaxation and excitation energy-transfer pathways of carotenoids in solution and in photosynthetic pigment-protein complexes. The focus of this chapter is to explain how to use ultrafast time-resolved absorption spectroscopy in carotenoid research. The importance of a systematic approach to understanding the various carotenoid excited states by using a series of carotenoids with different conjugation lengths and the isomers of carotenoids is also emphasized.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Carotenoides/metabolismo , Lasers , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Análise Espectral/métodos
4.
Phys Chem Chem Phys ; 24(22): 13514-13518, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35438118

RESUMO

Pentacene derivatives with both π-radical- and TIPS-substituents (1m and 1p) were synthesized and their photochemical properties and excited-state dynamics were evaluated. The pentacene-radical-linked systems 1m (1p) showed a remarkable improvement in photochemical stability, which was 187 (139) times higher than that of 6,13-bis(triisopropylsilylethynyl)pentacene. Transient absorption spectroscopy showed that this remarkable photostabilization is due to the ultrafast intersystem crossing induced by effective π-conjugation between the radical substituent and pentacene moiety. The relationship between π-topology and the photochemical stability is also discussed based on the excited-state dynamics.

5.
Commun Chem ; 5(1): 135, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36697849

RESUMO

In bacterial photosynthesis, the excitation energy transfer (EET) from carotenoids to bacteriochlorophyll a has a significant impact on the overall efficiency of the primary photosynthetic process. This efficiency can be enhanced when the involved carotenoid has intramolecular charge-transfer (ICT) character, as found in light-harvesting systems of marine alga and diatoms. Here, we provide insights into the significance of ICT excited states following the incorporation of a higher plant carotenoid, ß-apo-8'-carotenal, into the carotenoidless light-harvesting 1 (LH1) complex of the purple photosynthetic bacterium Rhodospirillum rubrum strain G9+. ß-apo-8'-carotenal generates the ICT excited state in the reconstituted LH1 complex, achieving an efficiency of EET of up to 79%, which exceeds that found in the wild-type LH1 complex.

6.
Commun Chem ; 4(1): 118, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36697644

RESUMO

Chlorophyll (Chl) derivatives have recently been proposed as photoactive materials in next-generation bio-inspired solar cells, because of their natural abundance, environmental friendliness, excellent photoelectric performance, and biodegradability. However, the intrinsic excitation dynamics of Chl derivatives remain unclear. Here, we show sub-nanosecond pump-probe time-resolved absorption spectroscopy of Chl derivatives both in solution and solid film states. We observe the formation of triplet-excited states of Chl derivatives both in deoxygenated solutions and in film samples by adding all-trans-ß-carotene as a triplet scavenger. In addition, radical species of the Chl derivatives in solution were identified by adding hydroquinone as a cation radical scavenger and/or anion radical donor. These radical species (either cations or anions) can become carriers in Chl-derivative-based solar cells. Remarkably, the introduction of hydroquinone to the film samples enhanced the carrier lifetimes and the power conversion efficiency of Chl-based solar cells by 20% (from pristine 1.29% to 1.55%). This enhancement is due to a charge recombination process of Chl-A+/Chl-D-, which is based on the natural Z-scheme process of photosynthesis.

7.
Chemistry ; 26(41): 8897-8906, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32168386

RESUMO

Accurately mimicking structure and function of natural chlorophyll (Chl) assemblies is very challenging. Herein, we report the synthesis of a fullerene-appended Chl dimer being capable of intramolecular photoinduced charge separation (CS) with a unique structure reminiscent of reaction centers (RCs) in phototrophs. Structural analyses revealed that the Chl dimer adopts a bird-like structure in which two Chl components overlapped partially with one of the four pyrrole rings in a Chl ring similar to in a Chl pair in the natural RC complexes. A comparative study including voltammetry and spectrometric analyses using the Chl dimer and its corresponding monomer with and without a fullerene moiety was performed to gain insight into the effect of Chl pairing on (photo)redox properties. Our results suggest that the present dimer motif that closely resemble the Chl pair in natural RCs lead to more facile oxidation and lower energy of the CS state of the Chl dimer than those of the Chl monomer, resulting in its photoredox behavior different from that of the monomer Chl.

8.
Nat Commun ; 9(1): 3354, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120224

RESUMO

The originally published version of this article contained an error in the subheading 'Heme is required for CO-dependent channel activation', which was incorrectly given as 'Hame is required for CO-dependent channel activation'. This has now been corrected in both the PDF and HTML versions of the Article.

9.
Arch Biochem Biophys ; 650: 49-58, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730320

RESUMO

The chemical structures of the carotenoid molecules are very simple and one might think that their electronic features are easily predicted. However, there is still has so much unknown information excepting the correlation between the electronic energy state and the length of effective conjugation chain of carotenoids. To investigate the electronic feature of the carotenoids, the most essential method is measuring the optical absorption spectra, but simulations based on the resonance Raman spectra are also an effective approach. For this reason, we studied the optical absorption spectra as well as resonance Raman spectra of 15 different carotenoid molecules each possessing a cyclic end-group, recorded in tetrahydrofuran (THF) solutions at room temperature. The whole band shapes of the absorption spectra of all these carotenoid molecules were successfully simulated using a stochastic model and Brownian oscillators. The parameters obtained from the simulation make it possible to discuss the intermolecular interaction between carotenoids and solvent THF molecules quantitatively.


Assuntos
Carotenoides/química , Plantas/química , Análise Espectral Raman/métodos , Acetilação , Algoritmos , Carotenoides/isolamento & purificação , Solventes/química , Espectrofotometria/métodos , Processos Estocásticos
10.
J R Soc Interface ; 15(141)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643225

RESUMO

Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.


Assuntos
Carotenoides/química , Fotossíntese/fisiologia , Carotenoides/fisiologia , Clorofila/química , Clorofila/fisiologia , Transferência de Energia , Modelos Biológicos , Modelos Moleculares
11.
Nat Commun ; 9(1): 907, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500353

RESUMO

Despite being highly toxic, carbon monoxide (CO) is also an essential intracellular signalling molecule. The mechanisms of CO-dependent cell signalling are poorly defined, but are likely to involve interactions with heme proteins. One such role for CO is in ion channel regulation. Here, we examine the interaction of CO with KATP channels. We find that CO activates KATP channels and that heme binding to a CXXHX16H motif on the SUR2A receptor is required for the CO-dependent increase in channel activity. Spectroscopic and kinetic data were used to quantify the interaction of CO with the ferrous heme-SUR2A complex. The results are significant because they directly connect CO-dependent regulation to a heme-binding event on the channel. We use this information to present molecular-level insight into the dynamic processes that control the interactions of CO with a heme-regulated channel protein, and we present a structural framework for understanding the complex interplay between heme and CO in ion channel regulation.


Assuntos
Monóxido de Carbono/metabolismo , Canais Iônicos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Células HEK293 , Heme/metabolismo , Humanos , Ativação do Canal Iônico , Canais KATP/metabolismo , Modelos Moleculares , Análise Espectral Raman , Receptores de Sulfonilureias/química , Receptores de Sulfonilureias/metabolismo
12.
Biochim Biophys Acta ; 1857(11): 1759-1765, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27544823

RESUMO

Resonance Raman spectroscopy was used to evaluate pigment structure in the FCP-like light-harvesting complex of Chromera velia (Chromera light-harvesting complex or CLH). This antenna protein contains chlorophyll a, violaxanthin and a new isofucoxanthin-like carotenoid (called Ifx-l). We show that Ifx-l is present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 515 and 548nm respectively. In this complex, only one violaxanthin population absorbing at 486nm is observed. All the CLH-bound carotenoid molecules are in all-trans configuration, and among the two Ifx-l carotenoid molecules, the red one is twisted, as is the red-absorbing lutein in LHCII trimers. Analysis of the carbonyl stretching region for Chl a excitations indicates CLH binds up to seven Chl a molecules in five non-equivalent binding sites, in reasonable agreement with sequence analyses which have identified eight potential coordinating residues. The binding modes and conformations of CLH-bound pigments are discussed with respect to the known structures of LHCII and FCP.


Assuntos
Alveolados/química , Complexos de Proteínas Captadores de Luz/química , Xantofilas/química , Alveolados/metabolismo , Sítios de Ligação , Complexos de Proteínas Captadores de Luz/metabolismo , Ligação Proteica , Xantofilas/metabolismo
13.
Subcell Biochem ; 79: 111-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27485220

RESUMO

Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.


Assuntos
Carotenoides/metabolismo , Transferência de Energia , Fotossíntese , Pigmentos Biológicos/metabolismo , Carotenoides/química , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Pigmentos Biológicos/química
14.
Photosynth Res ; 121(1): 69-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24861896

RESUMO

Siphonous green algae, a type of deep-sea green algae, appear olive drab and utilize blue-green light for photosynthesis. A siphonous green alga, Codium (C.) intricatum, was isolated from Okinawa prefecture in Japan, and a clonal algal culture in filamentous form was established. The major light-harvesting antenna was analogous to the trimeric LHCII found in higher plants, but the C. intricatum complex contained an unusual carbonyl carotenoid siphonaxanthin. Culture conditions were optimized to achieve high siphonaxanthin content in intact lyophilized filamentous bodies. Interestingly, the carotenoid composition was different when cultured under high irradiance: all-trans neoxanthin was accumulated in addition to the normal 9'-cis form in whole cell extract. Resonance Raman spectra of intact filamentous bodies, cultured under high- and low-light conditions, confirmed the accumulation of all-trans neoxanthin under high irradiance conditions. A plausible function of the presence of all-trans neoxanthin will be discussed in relation to the regulation against high light stress.


Assuntos
Clorófitas/química , Clorófitas/metabolismo , Análise Espectral Raman/métodos , Xantofilas/metabolismo , Xantofilas/química
15.
Phys Chem Chem Phys ; 15(21): 8088-94, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23532104

RESUMO

The recently reported efficient charge-separated system based on bipyridine-diacetylide platinum(ii) complexes was applied to photoelectric conversion systems herein, based on the design and synthesis of two triads: MTA-Pt-NDISAc (3, MTA: dimethoxytriphenylamine, Pt: platinum(ii) complex, NDISAc: thioacetate derivative linked to naphthalenediimide) and MTA-Pt-MNICOOH (4, MNICOOH: naphthaleneimide-4-carboxylic acid). The charge-separated (CS) states of triads 3 and 5 (MOM-protected 4) were effectively generated by photo-induced electron transfer in both THF and toluene, although the rate of formation of the CS state from 5 was relatively slow in toluene. The lifetimes of these CS states were determined to be 730 ns in toluene and 61 ns (70%) and 170 ns (30%) as a double exponential decay in THF for 3, and 600 ns in toluene and 170 ns in THF for 5. The acetylthio group of triad 3 was exploited in the preparation of a self-assembled monolayer (SAM) on a gold surface. Photocurrent was detected upon irradiation of an electrochemical cell comprising Au/3/Na ascorbate/Pt, which was ascribed to the platinum(ii) complex based on the action spectrum. The carboxylic acid group of triad 4 facilitated adsorption on the TiO2 surface, and a dye-sensitized solar cell constructed based on FTO/TiO2/4/electrolyte (LiI-I2)/Pt exhibited a poor energy conversion efficiency (η = 0.20%) based on the incident photon-to-current conversion efficiency spectrum and the I-V curve. This poor efficiency may be derived from the bent molecular shape of 4, or may be due to a possible high energy barrier in the electron injection process through the adsorption site.

16.
Acta Biochim Pol ; 59(1): 53-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428125

RESUMO

The high antioxidant activity of astaxanthin has been attracted considerable attention in these days. One of the major antioxidant activities of this carotenoid is anti-photoaging. We have been focusing our attention on this particular issue. The anti-photoaging activity should be functioning in inner skin. In this study we tried to find out the fact that astaxanthin that has been swabbed on the outer surface of the skin has really passed through and reached to the inner skin. For this purpose resonance Raman microscopy was applied to the rat skin sample on which astaxanthin was swabbed on its outer surface. Astaxanthin gives rise to a unique Raman spectrum that is characteristic of its molecular structure. Therefore, we can easily identify the presence or absence of astaxanthin in the area of the rat skin that is subjected to this spectroscopic measurement. We used 532 nm laser light for probing the resonance Raman scattering of astaxanthin. Astaxanthin shows three strong Raman lines at 1508, 1145, and 993 cm(-1). These three lines are ascribable to the C=C stretching, C-C stretching, and C-CH(3) in-plane rocking vibrational modes, respectively. We have constructed confocal Raman microscope that has the spatial resolution of ca. 500 nm. Three-dimensional mapping of the Raman spectrum of astaxanthin has been performed in order to determine its distribution in the rat skin.


Assuntos
Carotenoides/metabolismo , Microscopia/métodos , Animais , Técnicas In Vitro , Ratos , Pele/metabolismo , Xantofilas/metabolismo
17.
J Phys Chem A ; 115(11): 2110-9, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21361262

RESUMO

The photophysical properties of a carbonyl-containing carotenoid analogue in an s-cis configuration, relative to the conjugated π system, 2-(all-trans-retinylidene)-indan-1,3-dione (C20Ind), were investigated by femtosecond time-resolved spectroscopy in various solvents. The lifetime of the optically forbidden S(1) state of C20Ind becomes long as solvent polarity increases. This trend is completely opposite to the situation of S(1-ICT) dynamics of carbonyl-containing carotenoids, such as peridinin and fucoxanthin. Excitation energy dependence of the transient absorption measurements shows that the transient absorption spectra in nonpolar solvents were originated from two distinct transient species, while those in polar and protic solvents are due to a single transient species. By referring to the results of MNDO-PSDCI (modified neglect of differential overlap with partial single- and double-configuration interaction) calculations, we conclude: (1) in polar and protic solvents, the S(1) state is generated following excitation up to the S(2) state; (2) in nonpolar solvents, however, both the S(1) and the (1)nπ* states are generated; and (3) C20Ind does not generate the S(1-ICT) state, despite the fact that it has two conjugated carbonyl groups.


Assuntos
Análise Espectral/métodos , Antioxidantes , Carotenoides/química , Modelos Moleculares , Solventes , Xantofilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...